Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 607

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Data report of ROSA/LSTF experiment TR-LF-15; Accident management actions during station blackout transient with pump seal LOCA

Takeda, Takeshi

JAEA-Data/Code 2023-012, 75 Pages, 2023/10

JAEA-Data-Code-2023-012.pdf:4.45MB

An experiment denoted as TR-LF-15 was conducted on June 11, 2014 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment TR-LF-15 simulated accident management (AM) actions during a station blackout transient with TMLB' scenario with pump seal loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). This scenario is featured by loss of auxiliary feedwater functions. The pump seal LOCA was simulated by a 0.1% cold leg break. The test assumptions included total failure of both high pressure injection system and low pressure injection system of emergency core cooling system (ECCS). Also, it was presumed non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of ECCS. When steam generator (SG) secondary-side collapsed liquid level dropped to a certain low liquid level, the primary pressure turned to rise. After the SG secondary-side became voided, the safety valve of a pressurizer cyclically opened which led to loss of primary coolant. Core uncovery thus took place owing to core boil-off at high pressure. When an increase of 10 K was confirmed in cladding surface temperature of simulated fuel rods, SG secondary-side depressurization was started as the first AM action. At that time, the safety valves in both SGs were fully opened. Primary depressurization was initiated by completely opening the pressurizer safety valve as the second AM action with some delay after the first AM action onset. When the SG secondary-side pressure lowered to 1.0 MPa following the first AM action, water was injected into the secondary-side of both SGs via feedwater lines with low-head pumps as the third AM action. A reduction in the primary pressure was accelerated because the heat removal from the SG secondary-side system resumed shortly after the third AM action initiation.

Journal Articles

New market opened up by advanced nuclear reactors (Chapter 3, 4, 5, 7)

Kamide, Hideki; Kawasaki, Nobuchika; Hayafune, Hiroki; Kubo, Shigenobu; Chikazawa, Yoshitaka; Maeda, Seiichiro; Sagayama, Yutaka; Nishihara, Tetsuo; Sumita, Junya; Shibata, Taiju; et al.

Jisedai Genshiro Ga Hiraku Atarashii Shijo; NSA/Commentaries, No.28, p.14 - 36, 2023/10

Developments of next generation nuclear reactors, e.g., Fast Reactor, and High Temperature Gas cooled Reactor, are in progress. They can contribute to markets of electricity and industrial heat utilization in the world including Japan. Here, current status of reactor developments in Japan and also situation in the world are summarized, especially for activities of Generation IV International Forum (GIF), developments of Fast Reactor and High Temperature Gas cooled Reactor in Japan, and SMR movements in the world.

JAEA Reports

Differential pressure rise event for filters of HTTR primary helium gas circulators, 1; Investigation of differential pressure rise event

Nemoto, Takahiro; Arakawa, Ryoki; Kawakami, Satoru; Nagasumi, Satoru; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; Furusawa, Takayuki; Inoi, Hiroyuki; et al.

JAEA-Technology 2023-005, 33 Pages, 2023/05

JAEA-Technology-2023-005.pdf:5.25MB

During shut down of the HTTR (High Temperature engineering Test Reactor) RS-14 cycle, an increasing trend of filter differential pressure for the helium gas circulator was observed. In order to investigate this phenomenon, the blower of the primary helium purification system was disassembled and inspected. As a result, it is clear that the silicon oil mist entered into the primary coolant due to the deterioration of the charcoal filter performance. The replacement and further investigation of the filter are planning to prevent the reoccurrence of the same phenomenon in the future.

JAEA Reports

Experiment of incineration for Trans-Uranic (TRU) wastes containing chlorides

Yamashita, Kiyoto; Yokoyama, Aya*; Takagai, Yoshitaka*; Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke

JAEA-Technology 2022-020, 106 Pages, 2022/10

JAEA-Technology-2022-020.pdf:4.77MB

Radioactive solid wastes generated by Fukushima Daiichi Nuclear Power Station disaster may contain high levels of salt from the tsunami and seawater deliberately released into the area. It is assumed that polyvinyl chloride (PVC) products may be used for decommissioning work and for containment of radioactive wastes in the future. Among the method of handling them, incineration is one method that needs to be investigated as it is good method for reduction and stabilization of wastes. But in order to dispose of Trans-Uranic (TRU) solid waste containing chlorides, it is necessary to select the structure and materials of the facility based on the information such as the movement of nuclides and chlorides in the waste gas treating system and the corrosion of equipment due to chlorides. Therefore, we decided to get various data necessary to design a study of the incineration facilities. And we decided to examine the transfer behavior of chlorides to the waste gas treatment system, the corrosion-resistance of materials in the incineration facilities, and the distribution survey of plutonium in them obtained using the Plutonium-contaminated Waste Treatment Facility (PWTF), Nuclear Fuel Cycle Engineering Laboratories, which is a unique incinerating facility in Japan. This report describes the transfer behavior of chlorides in the waste gas treatment system, the evaluation of corrosion-resistance materials and the distribution survey of plutonium in the incineration facilities obtained by these tests using the Plutonium-contaminated Waste Treatment Facility, Nuclear Fuel Cycle Engineering Laboratories.

Journal Articles

Instability phenomena of lean hydrogen/oxygen/inert-gas premixed flames on a flat burner

Katsumi, Toshiyuki; Thwe Thwe, A.; Kadowaki, Satoshi

Journal of Visualization, 25(5), p.1075 - 1083, 2022/10

 Times Cited Count:1 Percentile:20.8(Computer Science, Interdisciplinary Applications)

Lean combustion and inert-gas addition are useful to control the burning velocity of hydrogen premixed flames, and it is well known that the cellular structure forms on the front of lean hydrogen flames owing to intrinsic instability. However, the influences of inert-gas addition on the instability phenomena of lean hydrogen premixed flames are not understood fully, and then it is needed to be investigated the flame instability experimentally. In the experiments, the cellular structure and fluctuation of H$$_{2}$$/O$$_{2}$$/inert gases (Ar, N$$_{2}$$,CO$$_{2}$$) premixed flames on a flat burner were obtained using direct observation, laser diagnostics and light emission intensity to elucidate the characteristics of instability phenomena. As the results, the correlation of inert-gas addition, equivalence ratio and total flow rate with the characteristics of cellular flames was revealed, and the influences of these parameters on flame instability were discussed.

Journal Articles

High-temperature gaseous reaction of cesium with siliceous thermal insulation; The Potential implication to the provenance of enigmatic Fukushima cesium-bearing material

Rizaal, M.; Nakajima, Kunihisa; Saito, Takumi*; Osaka, Masahiko; Okamoto, Koji*

ACS Omega (Internet), 7(33), p.29326 - 29336, 2022/08

 Times Cited Count:2 Percentile:29.84(Chemistry, Multidisciplinary)

Journal Articles

On the adsorption and reactivity of element 114, flerovium

Yakushev, A.*; Lens, L.*; D$"u$llmann, Ch. E.*; Khuyagbaatar, J.*; J$"a$ger, E.*; Krier, J.*; Runke, J.*; Albers, H. M.*; Asai, Masato; Block, M.*; et al.

Frontiers in Chemistry (Internet), 10, p.976635_1 - 976635_11, 2022/08

 Times Cited Count:9 Percentile:79.28(Chemistry, Multidisciplinary)

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. The first chemical experiment on Fl suggested that Fl is a noble-gas-like element, while the second studies suggested that Fl has a volatile-metal-like character. To obtain more reliable conclusion, we performed further experimental studies on Fl adsorption behavior on Si oxide and gold surfaces. The present results suggest that Fl is highly volatile and less reactive than the volatile metal, Hg, but has higher reactivity than the noble gas, Rn.

Journal Articles

Development of evaluation method of gas entrainment on the free surface in the reactor vessel in pool-type sodium-cooled fast reactors; Gas entrainment judgment based on three-dimensional evaluation of vortex center line and distribution of pressure decrease

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/08

Development of evaluation method for cover gas entrainment (GE) by vortices generated at free surface in upper plenum of sodium-cooled fast reactor (SFR) is required. GE evaluation tool, named StreamViewer, based on method using numerical results of three-dimensional computational fluid dynamics analysis for loop-type SFRs has been developed. In this study, modification of evaluation method of StreamViewer to rationalize conservativeness in evaluation results was examined by identifying vortex center lines and calculating three-dimensional distribution of pressure decrease along vortex center lines. The applicability of modified method was checked using water experimental result in rectangular open channel where unsteady vortices are generated. As the result, it was indicated that evaluation results on gas core depth which were excessive in current method were improved in modified method, and it is confirmed that modified method may discriminate onset of GE with appropriate criteria.

Journal Articles

Numerical simulation of sodium mist behavior in turbulent Rayleigh-B$'e$nard convection using new developed mist models

Ohira, Hiroaki*; Tanaka, Masaaki; Yoshikawa, Ryuji; Ezure, Toshiki

Annals of Nuclear Energy, 172, p.109075_1 - 109075_10, 2022/07

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

In order to evaluate the mist behavior in the cover gas region of Sodium-cooled Fast Reactors (SFRs) in good accuracy, turbulent model for Rayleigh-B$'e$nard convection (RBC) was selected, and the Reynolds-averaged number density and momentum equations for mist behavior were developed and incorporated into the OpenFOAM code. In the first stage, the RBC in a simple parallel channel was calculated using Favre-averaged k-$$omega$$ SST model. The average temperature and flow characteristics agreed well with results from DNS, LES, and experiments. Then the basic heat transfer experiment simulating the cover gas region of SFRs was calculated using this turbulent model and new mist models. The calculated average temperature distribution in the height direction and the mist mass concentration agreed well with the experimental results. We developed a method that could simulate the mist behavior in turbulent RBC environments and the cover gas region of SFRs with high accuracy.

JAEA Reports

Spatial distribution of desaturation around the tunnel predicted by three-dimensional two-phase flow modeling of the degassing process of dissolved gases in groundwater

Miyakawa, Kazuya; Yamamoto, Hajime*

JAEA-Research 2022-003, 40 Pages, 2022/05

JAEA-Research-2022-003.pdf:6.08MB

The excavation of large-scale underground facilities, such as geological disposal of high-level radioactive waste, creates an excavation damaged zone (EDZ) with cracks around the tunnel. In the EDZ, oxygen invades the bedrock through unsaturated cracks and affects environmental conditions for nuclide migration. When a tunnel is excavated in a geological formation containing a high concentration of dissolved CH$$_{4}$$, such as the Neogene marine sediments, degassed CH$$_{4}$$ prevents oxygen intrusion. However, it may be promoted through gas-phase diffusion through desaturation. The purpose of this study is to illustrate the method of estimating the spatial distribution of desaturation associated with the construction and operation of underground facilities in a stratum that contains a large amount of dissolved CH$$_{4}$$. A sequential excavation analysis that reflected the actual process of 10-year excavation of the Horonobe Underground Research Laboratory (URL) was carried out along with gas-water two-phase flow analysis. The analysis results of the amount of groundwater and gas discharged from the URL were about 100 to 300 m$$^{3}$$ d$$^{-1}$$ and 250 to 350 m$$^{3}$$ d$$^{-1}$$, respectively, as of January 2017. These results showed values close to the observations (100 m$$^{3}$$ d$$^{-1}$$ and 300 m$$^{3}$$ d$$^{-1}$$, respectively). The analysis results of the saturation distribution were relatively high around the 250 m gallery and relatively low around the 350 m gallery, confirming that they are consistent with the in-situ observations. Although there were still technical issues of analysis regarding the conditions for groundwater drainage from the tunnel wall and the method of handling grout effects, the numerical calculation was generally appropriate. Although the results of the saturation distribution associated with the excavation were insufficient as the quantitative evaluation, they were almost correct from a qualitative point of view.

JAEA Reports

Neutronic analysis of beam window and LBE of an Accelerator-Driven System

Nakano, Keita; Iwamoto, Hiroki; Nishihara, Kenji; Meigo, Shinichiro; Sugawara, Takanori; Iwamoto, Yosuke; Takeshita, Hayato*; Maekawa, Fujio

JAEA-Research 2021-018, 41 Pages, 2022/03

JAEA-Research-2021-018.pdf:2.93MB

Neutronic analysis of beam window of the Accelerator-Driven System (ADS) proposed by Japan Atomic Energy Agency (JAEA) has been conducted using PHITS and DCHAIN-PHITS codes. We investigate gas production of hydrogen and helium isotopes in the beam window, displacement per atom of beam window material, and heat generation in the beam window. In addition, distributions of produced nuclides, heat density, and activity are derived. It was found that at the maximum 12500 appm H production, 1800 appm He production, and damage of 62.1 DPA occurred in the beam window by the ADS operation. On the other hand, the maximum heat generation in the beam window was 374 W/cm$$^3$$. In the analysis of LBE, $$^{206}$$Bi and $$^{210}$$Po were found to be the dominant nuclides in decay heat and radioactivity. Furthermore, the heat generation in the LBE by the proton beam was maximum around 5 cm downstream of the beam window, which was 945 W/cm$$^3$$.

Journal Articles

Evaluation of gas entrainment flow rate by free surface vortex

Torikawa, Tomoaki*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Konsoryu, 36(1), p.63 - 69, 2022/03

On free surface of a sodium cooled fast reactor, gas entrainment can be caused by free surface vortices, which may result in disturbance in core power. It is important to develop an evaluation model to predict accurately entrained gas flow rate. In this study, entrained gas flow rate a simple gas entrainment experiment is conducted with focusing on effect of pressure difference between upper and lower tanks. Pressure difference between upper and lower tanks are controlled by changing gas pressure in lower tank. As a result, it is confirmed that the entrained gas flow rate increases with increasing pressure difference between upper and lower tanks. By visualization of swirling annular flow in suction pipe, it is also observed that pressure drop in suction pipe increases with increase in entrained gas flow rate, which implies that entrained gas flow rate can be predicted by evaluation model based on pressure drop in swirling annular flow region.

Journal Articles

Gas entrainment phenomenon from free liquid surface in a sodium-cooled fast reactor; Measurements and evaluation on a gas core growth form the liquid surface

Uchida, Mao*; Alzahrani, H.*; Shiono, Mikihito*; Sakai, Takaaki*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

Gas entrainment from cover gas is one of key issues for sodium-cooled fast reactors design to prevent unexpected effects to core reactivity. A vortex model based evaluation method has been developed to evaluate the surface vortex gas core growth at the free surface in the reactor vessel. In this study, water experiments were performed to clarify the prediction accuracy for the vortex gas core growth during the vortex drift motion using a circulating water tunnel with an open flow channel test section. Gas core growth were predicted by applying the evaluation method to the numerical analyses performed in the same geometry of the experiments, and compared with the experimental results. It was observed the gas core growth became large at downstream region where downward velocity became large in experiment. However, the gas core length which were predicted from numerical result showed a discrepancy with the experimental result on the peak position and an overestimation of peak value.

Journal Articles

Flow regime and void fraction predictions in vertical rod bundle flow channels

Han, X.*; Shen, X.*; Yamamoto, Toshihiro*; Nakajima, Ken*; Sun, Haomin; Hibiki, Takashi*

International Journal of Heat and Mass Transfer, 178, p.121637_1 - 121637_24, 2021/10

 Times Cited Count:7 Percentile:58.99(Thermodynamics)

Journal Articles

Analytical study on removal mechanisms of cesium aerosol from a noble gas bubble rising through liquid sodium pool, 2; Effects of particle size distribution and agglomeration in aerosols

Miyahara, Shinya*; Kawaguchi, Munemichi; Seino, Hiroshi; Atsumi, Takuto*; Uno, Masayoshi*

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 6 Pages, 2021/08

In a postulated accident of fuel pin failure of sodium cooled fast reactor, a fission product cesium will be released from the failed pin as an aerosol such as cesium iodide and/or cesium oxide together with a fission product noble gas such as xenon and krypton. As the result, the xenon and krypton released with cesium aerosol into the sodium coolant as bubbles have an influence on the removal of cesium aerosol by the sodium pool in a period of bubble rising to the pool surface. In this study, cesium aerosol removal behavior due to inertial deposition, sedimentation and diffusion from a noble gas bubble rising through liquid sodium pool was analyzed by a computer program which deals with the expansion and the deformation of the bubble together with the aerosol absorption considering the effects of particle size distribution and agglomeration in aerosols. In the analysis, initial bubble diameter, sodium pool depth and temperature, aerosol particle diameter and density, initial aerosol concentration in the bubble were changed as parameter, and the results for the sensitivities of these parameters on decontamination factor (DF) of cesium aerosol were compared with the results of the previous study in which the effects of particle size distribution and agglomeration in aerosols were not considered. From the results, it was concluded that the sensitivities of initial bubble diameter, the aerosol particle diameter and density to the DF became significant due to the inertial deposition of agglomerated aerosols. To validate these analysis results, the simulation experiments have been conducted using a simulant particles of cesium aerosol under the condition of room temperature in water pool and air bubble systems. The experimental results were compared with the analysis results calculated under the same condition.

JAEA Reports

Improvement of intragranular fission gas behavior model for fuel performance code FEMAXI-8

Udagawa, Yutaka; Tasaki, Yudai

JAEA-Data/Code 2021-007, 56 Pages, 2021/07

JAEA-Data-Code-2021-007.pdf:5.05MB

Japan Atomic Energy Agency (JAEA) has released FEMAXI-8 in 2019 as the latest version of the fuel performance code FEMAXI, which has been developed to analyze thermal and mechanical behaviors of a single fuel rod in mainly normal operation conditions and anticipated transient conditions. This report summarizes a newly developed model to analyze intragranular fission gas behaviors considering size distribution of gas bubbles and their dynamics. While the intragranular fission gas behavior models implemented in the previous FEMAXI versions have supported only treating single bubble size for a given fuel element, the new model supports multiple gas groups according to their size and treats their dynamic behaviors, making the code more versatile. The model was first implemented as a general module that takes arbitrary number of bubble groups and spatial mesh division for a given fuel grain system. An interface module to connect the model to FEMAXI-8 was then developed so that it works as a 2 bubble groups model, which is the minimum configuration of the multi-grouped model to be operated with FEMAXI-8 at the minimum calculation cost. FEMAXI-8 with the new intragranular model was subjected to a systematic validation calculation against 144 irradiation test cases and recommended values for model parameters were determined so that the code makes reasonable predictions in terms of fuel center temperature, fission gas release, etc. under steady-state and power ramp conditions.

Journal Articles

Fission gas release from irradiated mixed-oxide fuel pellet during simulated reactivity-initiated accident conditions; Results of BZ-3 and BZ-4 tests

Kakiuchi, Kazuo; Udagawa, Yutaka; Amaya, Masaki

Annals of Nuclear Energy, 155, p.108171_1 - 108171_11, 2021/06

 Times Cited Count:1 Percentile:16.35(Nuclear Science & Technology)

JAEA Reports

A Numerical simulation study of the desaturation and oxygen infusion into the sedimentary rock around the tunnel in the Horonobe Underground Research Laboratory

Miyakawa, Kazuya; Aoyagi, Kazuhei; Akaki, Toshifumi*; Yamamoto, Hajime*

JAEA-Data/Code 2021-002, 26 Pages, 2021/05

JAEA-Data-Code-2021-002.pdf:2.14MB
JAEA-Data-Code-2021-002-appendix(CD-ROM).zip:40.99MB

Investigations employing numerical simulation have been conducted to study the mechanisms of desaturation and oxygen infusion into sedimentary formations. By mimicking the conditions of the Horonobe underground research laboratory, numerical simulations aided geoscientific investigation of the effects of dissolved gas content and rock permeability on the desaturation (Miyakawa et al., 2019) and mechanisms of oxygen intrusion into the host rock (Miyakawa et al., 2021). These simulations calculated multi-phase flow, including flows of groundwater and exsolved gas, and conducted sensitivity analysis changing the dissolved gas content, rock permeability, and humidity at the gallery wall. Only the most important results from these simulations have been reported previously, because of publishers' space limitations. Hence, in order to provide basic data for understanding the mechanisms of desaturation and oxygen infusion into rock, all data for 27 output parameters (e.g., advective fluxes of heat, gas, and water, diffusive fluxes of water, CH$$_{4}$$, CO$$_{2}$$, O$$_{2}$$, and N$$_{2}$$, saturation degree, water pressure, and mass fraction of each component) over a modeling period of 100 years are presented here.

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-09; 1.9% pressure vessel top small break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2021-006, 61 Pages, 2021/04

JAEA-Data-Code-2021-006.pdf:2.78MB

An experiment denoted as SB-PV-09 was conducted on November 17, 2005 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-09 simulated a 1.9% pressure vessel top small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). In the experiment, liquid level in the upper-head was found to control break flow rate. When maximum core exit temperature reached 623 K, steam generator (SG) secondary-side depressurization was initiated by fully opening the relief valves in both SGs as an accident management (AM) action. The AM action, however, was ineffective on the primary depressurization until the SG secondary-side pressure decreased to the primary pressure. Meanwhile, the core power was automatically reduced when maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 958 K to protect the LSTF core due to late and slow response of core exit temperature. After the automatic core power reduction, loop seal clearing (LSC) was induced in both loops by steam condensation on the ACC coolant injected into cold legs. The whole core was quenched because of core recovery after the LSC. After the ACC tanks started to discharge nitrogen gas, the pressure difference between the primary and SG secondary sides became larger. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-PV-09.

Journal Articles

Phenomena identification ranking tables for accident tolerant fuel designs applicable to severe accident conditions

Khatib-Rahbar, M.*; Barrachin, M.*; Denning, R.*; Gabor, J.*; Gauntt, R.*; Herranz, L. E.*; Hobbins, R.*; Jacquemain, D.*; Maruyama, Yu; Metcalf, J.*; et al.

NUREG/CR-7282, ERI/NRC 21-204 (Internet), 160 Pages, 2021/04

607 (Records 1-20 displayed on this page)